मराठी

The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______. -

Advertisements
Advertisements

प्रश्न

The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.

पर्याय

  • `[1/32, 7/8)`

  • `(1/24, 13/16)`

  • `[1/48, 13/16]`

  • `[1/32, 9/8)`

MCQ
रिकाम्या जागा भरा

उत्तर

The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal `underlinebb([1/32, 7/8)`.

Explanation:

Given expression is (tan–1 x)3 + (cot–1 x)3.

= (tan–1 x + cot–1 x)

((tan–1 x)2 + (cot–1 x)2 – tan–1 x cot–1 x)

= `(π/2)((tan^-1x + cot^-1x)^2 - 3tan^-1x cot^-1x)`

= `π^3/8 - (3π)/2 tan^-1 x(π/2 - tan^-1x)`

= `(3π)/2(tan^-1x - π/4)^2 + π^3/32`

Above expression will have a minimum value when `(tan^-1x - π/4)` becomes 0 at x = `π/4`.

So, the minimum value is `π^3/32`.

`\implies tan^-1 x ∈((-π)/2, π/2)`

Therefore, the maximum value occurs at x = `-π/2`.

So, the maximum value is `(7π^3)/8`.

= `π^3/32 ≤ kπ^3 < 7/8π^3`

= `1/32 ≤ k < 7/8`

Required range = `[1/32, 7/8)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×