Advertisements
Advertisements
प्रश्न
The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is
पर्याय
yex + x = C
xey + y = C
`ye^(y/x) + y` = C
`ye^(x/y) + y` = C
उत्तर
`ye^(x/y) + y` = C
Explanation:
The given differential equation is `(1 + e^(x/y)) dx + e^(x/y) (1 - x/y) dy` = 0
`(dx)/(dy) = (e^(x/y) (x/y - 1))/((e^(x/y) + 1))` ......(i)
= `g(x/y)` ∵ `(dx)/(dy) = g(x/y)`
∴ Equation (i) is the homogeneous differential equation so, put `x/y` = v i.e., x = vy
⇒ `(dx)/(dy) = v + y (dv)/(dy)`
Then, equation (i) becomes
`v + y (dv)/(dy) = (e^v(v - 1))/(e^v + 1)`
⇒ `y (dv)/(dy) = (e^v (v - 1))/(e^v + 1) - v`
⇒ `y (dv)/(dy) = (ve^v - e^v - ve^v - v)/(e^v + 1) - v`
⇒ `(e^v + 1)/(e^v + v) dv = - 1/y dy`
On integrating both sides, we get
`int (e^v + 1)/(e^v + v) dv = -int 1/y dy`
Put ev + v = t
⇒ `e^v + 1 = (dt)/(dv)`
⇒ dv = `(dt)/(e^v + 1)`
∴ `int (e^v + 1)/t (dt)/(e^v + 1) - log |y| + log C`
⇒ `log |t| + log |y| = log C`
⇒ `log |e^v + v| + log |y| = log C` .....(∵ t = ev + v)
⇒ `log|(e^v + v)y|` = C
⇒ `|(e^v + v)y|` = C
⇒ `(e^v + v)y` = C.
So, put v = `x/y`, we get
`(e^(x/y) + x/y)y` = C
⇒ `ye^(x/y) + x` = C
This is the required solution of the given differential equation.