Advertisements
Advertisements
प्रश्न
The solution of the differential equation `(1 + y^2) + (x - e^(tan^-1 y)) dy/dx` = 0 is ______.
पर्याय
`2x e^(tan^-1 y) = e^(2 tan^-1 y) + C`
`x e^(tan^-1 y) = tan^-1 y + C`
`x e^(2tan^-1 y) = e^(tan^-1 y) + C`
`(x - 2) = C e^(-tan^-1 y)`
उत्तर
The solution of the differential equation `(1 + y^2) + (x - e^(tan^-1 y)) dy/dx` = 0 is `underlinebb(2x e^(tan^-1 y) = e^(2 tan^-1 y) + C)`.
Explanation:
Given, differential equation is
`(1 + y^2) + (x - e^(tan^-1 y)) dy/dx` = 0
`\implies (1 + y^2)dx/dy = -x + e^(tan^-1) y`
`\implies dx/dy + x/(1 + y^2) = e^(tan^-1 y)/(1 + y^2)`, which is a linear differential equation.
Here, P = `1/(1 + y^2)`, Q = `e^(tan^-1 y)/(1 + y^2)`
IF = `e^(intPdy)`
= `e^(int 1/(1 + y^2)dy)`
= `e^(tan^-1 y)`
∴ Solution of the differential equation is
x . IF = `int Q . IF dy + C`
`xe^(tan^-1 y) = int (e^(tan^-1 y))/(1 + y^2) e^(tan^-1 y) dx + C/2`
`\implies x e^(tan^-1 y) = (e^(2tan^-1 y))/2 + C/2`
∴ `2x e^(tan^-1 y) = e^(2tan^-1 y) + C`