Advertisements
Advertisements
प्रश्न
The solution of the differential equation e–x (y + 1) dy + (cos2 x – sin 2x)ydx = 0 subjected to the condition that y = 1, when x = 0 is ______.
पर्याय
y + log y + ex cos2 x = 2
log (y + 1) + ex cos2 x = 1
y + log y = ex cos2 x
(y + 1) + ex cos2 x = 2
उत्तर
The solution of the differential equation e–x (y + 1) dy + (cos2 x – sin 2x)ydx = 0 subjected to the condition that y = 1, when x = 0 is y + log y + ex cos2 x = 2.
Explanation:
Given equation can be rewritten as
`(1 + 1/y)dy` = –ex (cos2 x – sin 2x)dx
On integrating both sides, we get
y + log y = `-e^x cos^2 x + int e^x sin2x dx - int e^x sin2x dx + C`
`\implies` y + log y = –ex cos2 x + C
At x = 0 and y = 1,
1 + 0 = –e0 cos 0 + C
`\implies` C = 2 ...[given]
∴ Required solutions is
y + log y = –ex cos2 x + 2
`\implies` y + log y + ex cos2 x = 2