मराठी

The solution of the differential equation e–x (y + 1) dy + (cos2 x – sin 2x)ydx = 0 subjected to the condition that y = 1, when x = 0 is ______. -

Advertisements
Advertisements

प्रश्न

The solution of the differential equation e–x (y + 1) dy + (cos2 x – sin 2x)ydx = 0 subjected to the condition that y = 1, when x = 0 is ______.

पर्याय

  • y + log y + ex cos2 x = 2

  • log (y + 1) + ex cos2 x = 1

  • y + log y = ex cos2 x

  • (y + 1) + ex cos2 x = 2

MCQ
रिकाम्या जागा भरा

उत्तर

The solution of the differential equation e–x (y + 1) dy + (cos2 x – sin 2x)ydx = 0 subjected to the condition that y = 1, when x = 0 is y + log y + ex cos2 x = 2.

Explanation:

Given equation can be rewritten as

`(1 + 1/y)dy` = –ex (cos2 x – sin 2x)dx

On integrating both sides, we get

y + log y = `-e^x cos^2 x + int e^x sin2x  dx - int e^x sin2x  dx + C`

`\implies` y + log y = –ex cos2 x + C

At x = 0 and y = 1,

1 + 0 = –e0 cos 0 + C

`\implies` C = 2  ...[given]

∴ Required solutions is

y + log y = –ex cos2 x + 2

`\implies` y + log y + ex cos2 x = 2

shaalaa.com
Solution of a Differential Equation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×