Advertisements
Advertisements
प्रश्न
The solution of the equation `1 + ("d"x)/("d"y) = (2y)/x` is ______.
पर्याय
(x – y)(x + 2y)2 = c
y = x + c
(x + y)(x – 2y)2 = c
y = `x/(2y - x) + "c"`
उत्तर
The solution of the equation `1 + ("d"x)/("d"y) = (2y)/x` is (x – y)(x + 2y)2 = c.
Explanation:
`1 + ("d"x)/("d"y) = (2y)/x`
⇒ `("d"x)/("d"y) = (2y - x)/x`
⇒ `("d"y)/("d"x) = x/(2y - x)` ......(i)
Put y = vx ......(ii)
⇒ `("d"y)/("d"x) = "v" + x "dv"/("d"x)` ......(iii)
Substituting (ii) and (iii) in (i), we get
`"v" + x "dv"/("d"x) = x/(2"v"x - x) = 1/(2"v" - 1)`
⇒ `x "dv"/("d"x) = 1/(2"v" - 1) = -"v" = (1 - 2"v"^2 + "v")/(2"v" - 1)`
⇒ `x "dv"/("d"x) = - (("v" - 1)(2"v" + 1))/(2"v" - 1)`
⇒ `((2"v" - 1))/((2"v" + 1)("v" - 1)) "dv" = (-"d"x)/x`
⇒ `1/(3("v" - 1)) + 4/(3(2"v" + 1)) = (-"d"x)/x`
Integrating on both sides, we get
`1/3 log("v" - 1) + 4/3, 1/2 log (2"v" + 1) = - logx + log"c"_1`
⇒ `log("v" - 1)^(1/3) + log(2"v" + 1)^(2/3) = log "c"_1/x`
⇒ `("v" - 1)^(1/3) (2"v" + 1)^(2/3) = "c"_1/x`
⇒ `((y - x)/x) ((2y + x)/x)^3 = "c"_1^3/x^3`
⇒ (x – y)(x + 2y)2 = c, where c = `-"c"_1^3`