मराठी

The solution of the equation dd1+dxdy=2yx is ______. -

Advertisements
Advertisements

प्रश्न

The solution of the equation `1 + ("d"x)/("d"y) = (2y)/x` is ______.

पर्याय

  • (x – y)(x + 2y)2 = c

  • y = x + c

  • (x + y)(x – 2y)2 = c

  • y = `x/(2y - x) + "c"`

MCQ
रिकाम्या जागा भरा

उत्तर

The solution of the equation `1 + ("d"x)/("d"y) = (2y)/x` is (x – y)(x + 2y)2 = c.

Explanation:

 `1 + ("d"x)/("d"y) = (2y)/x` 

⇒ `("d"x)/("d"y) = (2y - x)/x`

⇒ `("d"y)/("d"x) = x/(2y - x)`  ......(i)

Put y = vx   ......(ii)

⇒ `("d"y)/("d"x) = "v" + x "dv"/("d"x)`  ......(iii)

Substituting (ii) and (iii) in (i), we get

`"v" + x "dv"/("d"x) = x/(2"v"x - x) = 1/(2"v" - 1)`

⇒ `x "dv"/("d"x) = 1/(2"v" - 1) = -"v" = (1 - 2"v"^2 + "v")/(2"v" - 1)`

⇒ `x "dv"/("d"x) = - (("v" - 1)(2"v" + 1))/(2"v" - 1)`

⇒ `((2"v" - 1))/((2"v" + 1)("v" - 1)) "dv" = (-"d"x)/x`

⇒ `1/(3("v" - 1)) + 4/(3(2"v" + 1)) = (-"d"x)/x`

Integrating on both sides, we get

`1/3 log("v" - 1) + 4/3, 1/2 log (2"v" + 1) = - logx + log"c"_1`

⇒ `log("v" - 1)^(1/3) + log(2"v" + 1)^(2/3) = log  "c"_1/x`

⇒ `("v" - 1)^(1/3) (2"v" + 1)^(2/3) = "c"_1/x`

⇒ `((y - x)/x) ((2y + x)/x)^3 = "c"_1^3/x^3`

⇒ (x – y)(x + 2y)2 = c, where c = `-"c"_1^3`

shaalaa.com
Solution of a Differential Equation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×