Advertisements
Advertisements
प्रश्न
The speed of a boat in still water is 11 km/ hr. It can go 12 km up-stream and return downstream to the original point in 2 hours 45 minutes. Find the speed of the stream
उत्तर
Speed of a boat in still water = 11 km/hr
Let the speed of stream = x km/hr.
Distance covered = 12 km.
Time taken = 2 hours 45 minutes
= `2(3)/(4) = (11)/(4)`hours
Now according to the condition
`(12)/(11 - x) + (12)/(11 + x) = (11)/(4)`
⇒ `(12(11 + x + 11 - x))/((11 - x)(11 + x)) = (11)/(4)`
⇒ `(12 xx 22)/(121 - x^2) = (11)/(4)`
⇒ 1331 – 11x2 = 4 x 12 x 22 = 1056
⇒ 1331 – 11x2 = 1056
⇒ 1331 – 1056 – 11x2 = 0
⇒ -11x2 + 275 = 0
⇒ x2 – 25 = 0 ...(Dividing by -11)
⇒ (x + 5)(x – 5) = 0
Either x + 5 = 0,
then x = –5,
but it is not possible as it is in negative.
or
x – 5 = 0,
then x = 5
Hence speed of stream = 5km/hr.
APPEARS IN
संबंधित प्रश्न
Solve the following quadratic equations
(i) x2 + 5x = 0 (ii) x2 = 3x (iii) x2 = 4
A train travels 360 km at a uniform speed. If the speed had been 5 km/h more, it would have taken 1 hour less for the same journey. Find the speed of the train.
Solve the following quadratic equations by factorization:
`3x^2-2sqrt6x+2=0`
The sum of two numbers is 48 and their product is 432. Find the numbers?
If an integer is added to its square, the sum is 90. Find the integer with the help of quadratic equation.
A piece of cloth costs Rs. 35. If the piece were 4 m longer and each meter costs Rs. one less, the cost would remain unchanged. How long is the piece?
Solve the following quadratic equations by factorization:
\[\frac{x - 2}{x - 3} + \frac{x - 4}{x - 5} = \frac{10}{3}; x \neq 3, 5\]
If 2 is a root of the quadratic equation \[3 x^2 + px - 8 = 0\] and the quadratic equation \[4 x^2 - 2px + k = 0\] has equal roots, find the value of k.
A two digit number is such that the product of the digits is 14. When 45 is added to the number, then the digit are reversed. Find the number.
A two digit number is such that the product of the digits is 14. When 45 is added to the number, then the digit are reversed. Find the number.