Advertisements
Advertisements
प्रश्न
The sum of the first 7 terms of an A.P. is 63 and the sum of its next 7 terms is 161. Find the 28th term of this A.P.
उत्तर
Let a be the first term and d be the common difference.
We know that, sum of first n terms = Sn = \[\frac{n}{2}\][2a + (n − 1)d]
It is given that sum of the first 7 terms of an A.P. is 63.
And sum of next 7 terms is 161.
∴ Sum of first 14 terms = Sum of first 7 terms + sum of next 7 terms
= 63 + 161 = 224
Now,
S7 = \[\frac{7}{2}\][2a + (7 − 1)d]
⇒ 63 = \[\frac{7}{2}\] (2a + 6d)
⇒ 18 = 2a + 6d
⇒ 2a + 6d = 18 ....(1)
Also,
S14 = \[\frac{14}{2}\][2a + (14 − 1)d]
⇒ 224 = 7(2a + 13d)
⇒ 32 = 2a + 13d
⇒ 2a + 13d = 32 ....(2)
On subtracting (1) from (2), we get
13d − 6d = 32 − 18
⇒ 7d = 14
⇒ d = 2
⇒ 2a = 18 − 6d [From (1)]
⇒ 2a = 18 − 6 × 2
⇒ 2a = 18 − 12
⇒ 2a = 6
⇒ a = 3
Also, nth term = an = a + (n − 1)d
⇒ a28 = 3 + (28 − 1)2
= 3 + 27 × 2
= 57
Thus, 28th term of this A.P. is 57.
APPEARS IN
संबंधित प्रश्न
The first and the last terms of an AP are 7 and 49 respectively. If sum of all its terms is 420, find its common difference.
Find the sum of all even integers between 101 and 999.
If 4 times the 4th term of an AP is equal to 18 times its 18th term then find its 22nd term.
How many two-digit number are divisible by 6?
In a flower bed, there are 43 rose plants in the first row, 41 in second, 39 in the third, and so on. There are 11 rose plants in the last row. How many rows are there in the flower bed?
The next term of the A.P. \[\sqrt{7}, \sqrt{28}, \sqrt{63}\] is ______.
If Sn denote the sum of n terms of an A.P. with first term a and common difference dsuch that \[\frac{Sx}{Skx}\] is independent of x, then
Complete the following activity to find the 19th term of an A.P. 7, 13, 19, 25, ........ :
Activity:
Given A.P. : 7, 13, 19, 25, ..........
Here first term a = 7; t19 = ?
tn + a + `(square)`d .........(formula)
∴ t19 = 7 + (19 – 1) `square`
∴ t19 = 7 + `square`
∴ t19 = `square`
Find the sum of all even numbers from 1 to 250.
The sum of all two digit numbers is ______.