मराठी

The term independent of x in the expansion of [x+1x23-x13+1-x-1x-x12]10, x ≠ 1 is equal to ______. -

Advertisements
Advertisements

प्रश्न

The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.

पर्याय

  • 210

  • 220

  • 230

  • 240

MCQ
रिकाम्या जागा भरा

उत्तर

The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to 210.

Explanation:

Given expansion :

`[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`

= `[((x^(1/3) + 1)(x^(2/3) - x^(1/3) + 1))/((x^(2/3) - x^(1/3) + 1)) - ((x^(1/2) - 1)(x^(1/2 + 1)))/(x^(1/2)(x^(1/2) - 1))]^10`  ...[∵ a3 + b3 = (a + b)(a2 – ab + b2)]

= `[(x^(1/3) + 1) - (1 + x^(1/2))]^10`

= `[x^(1/3) - x^(-1/2)]^10`

General term :

Tr+1 = `""^10C_r[x^(1/3)]^((10 - r))[x^(-1/2)]^r`

For independent of x :

`(10 - r)/3 - r/2` = 0

⇒ r = 4

∴ Term independent of x = 10C4 = 210.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×