Advertisements
Advertisements
प्रश्न
The total cost function for the production of x units of an item is given by C = 10 - 4x3 + 3x4 find the
- average cost function
- marginal cost function
- marginal average cost function.
उत्तर
Given C = 10 - 4x3 + 3x4
i) Average cost (AC)
`= "C"/x = (10 - 4x^3 + 3x^4)/x`
`= 10/x - 4x^2 + 3x^3`
ii) Marginal Cost (MC) = `"dC"/"dx"`
`= "d"/"dx" (10 - 4x^3 + 3x^4)`
`= -12x^2 + 12x^3`
iii) Marginal Average Cost (MAC)
`= "d"/"dx" ("AC")`
`= "d"/"dx" (10/x - 4x^2 + 3x^3)`
`= - 10/x^2 - 8x + 9x^2`
APPEARS IN
संबंधित प्रश्न
If the demand law is given by p = `10e^(- x/2)` then find the elasticity of demand.
Find the elasticity of demand in terms of x for the following demand laws and also find the value of x where elasticity is equal to unity.
p = a – bx2
Find the values of x, when the marginal function of y = x3 + 10x2 – 48x + 8 is twice the x.
The demand function of a commodity is p = `200 - x/100` and its cost is C = 40x + 120 where p is a unit price in rupees and x is the number of units produced and sold. Determine
- profit function
- average profit at an output of 10 units
- marginal profit at an output of 10 units and
- marginal average profit at an output of 10 units.
Find the price elasticity of demand for the demand function x = 10 – p where x is the demand p is the price. Examine whether the demand is elastic, inelastic, or unit elastic at p = 6.
For the demand function p x = 100 - 6x2, find the marginal revenue and also show that MR = p`[1 - 1/eta_"d"]`
If the demand function is said to be inelastic, then:
Instantaneous rate of change of y = 2x2 + 5x with respect to x at x = 2 is:
Profit P(x) is maximum when
The demand function is always