Advertisements
Advertisements
प्रश्न
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
पर्याय
`22/7 - π`
`2/105`
0
`71/15 - (3π)/2`
MCQ
रिकाम्या जागा भरा
उत्तर
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is `underlinebb(22/7 - π)`
Explanation:
Let I = `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx`
= `int_0^1 ((x^4 - 1)(1 - x)^4 + (1 - x)^4)/((1 + x^2)) dx`
= `int_0^1 (x^2 - 1)(1 - x)^4 dx + int_0^1 (1 + x^2 - 2x)^2/((1 + x^2)) dx`
= `int_0^1 {(x^2 - 1) (1 - x)^4 + (1 + x^2) - 4x + (4x^2)/((1 + x^2))}dx`
= `int_0^1 {(x^2 - 1) (1 - x)^4 + (1 + x^2) - 4x + 4 - 4/(1 + x^2)}dx`
= `int_0^1(x^6 - 4x^5 + 5x^4 - 4x^2 + 4 - 4/(1 + x^2))dx`
= `[x^7/7 - (4x^6)/6 + (5x^5)/5 - (4x^3)/3 + 4x - 4 tan^-1x]_0^1`
= `1/7 - 4/6 + 5/5 - 4/3 + 4 - 4(π/4 - 0)`
= `22/7 - π`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?