Advertisements
Advertisements
प्रश्न
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
पर्याय
loge 4
loge 16
`4log_e(3 + 2sqrt(2))`
2 loge 16
उत्तर
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is `underlinebb(log_e16)`.
Explanation:
I = `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx
⇒ `int_(1/sqrt(2))^((-1)/sqrt(2)) sqrt([(x - 1)/(x + 1) - (x + 1)/(x - 1)]^2) "d"x = int_((-1)/sqrt(2))^(1/sqrt(2)) sqrt(((-4x)/(x^2 - 1))^2) "d"x`
⇒ `int_((-1)/sqrt(2))^(1/sqrt(2)) sqrt((16x^2)/(1 - x^2)^2) "d"x`
⇒ `int_((-1)/sqrt(2))^(1/sqrt(2)) (4|x|)/((1 - x^2)) "d"x`,
Since f(x) = `|x|/(1 - x^2)` is an even function,
So apply `int_(-"a")^"a" "f"|x|"d"x = 2int_0^"a""f"(x)"d"x`, we get
I = `8int_0^(1/sqrt(2)) (x"d"x)/(1 - x^2) = [-4"In"(1 - x^2)]_0^(1/sqrt(2))`
= loge 16