Advertisements
Advertisements
प्रश्न
The value of a machine depreciated by 10% per year during the first two years and 15% per year during the third year. Express the total depreciation of the machine, as percent, during the three years.
उत्तर
Let the value of the machine in the beginning = Rs. 100
For 1st year depreciation = 10% of Rs. 100 = Rs. 10
Value of machine for second year = 100 - 10 = Rs. 90
For 2nd year depreciation = 10% of 90 = Rs. 9
Value of machine for third year = 90 - 9 = Rs. 81
For 3rd year depreciation = 15% of 81 = Rs. 12.15
Value of machine at the end of third year = 81 - 12.15 = Rs. 68.85
Net depreciation = Rs. 100 - Rs. 68.85 = Rs. 31.15 or 31.15%.
APPEARS IN
संबंधित प्रश्न
Calculate the amount and compound interest on Rs 8000 for 1 year at 9% per annum compound half yearly. (You could use the year by year calculation using SI formula to verify)
Find the compound interest at the rate of 5% per annum for 3 years on that principal which in 3 years at the rate of 5% per annum gives Rs 1200 as simple interest.
In how much time would Rs 5000 amount to Rs 6655 at 10% per annum compound interest?
Kamala borrowed from Ratan a certain sum at a certain rate for two years simple interest. She lent this sum at the same rate to Hari for two years compound interest. At the end of two years she received Rs 210 as compound interest, but paid Rs 200 only as simple interest. Find the sum and the rate of interest.
The difference between the compound interest and simple interest on a certain sum for 2 years at 7.5% per annum is Rs 360. Find the sum.
Find the amount and the compound interest.
No. | Principal (₹) | Rate (p.c.p.a.) | Duration (Years) |
1 | 2000 | 5 | 2 |
2 | 5000 | 8 | 3 |
3 | 4000 | 7.5 | 2 |
A certain sum amounts to Rs. 5,292 in two years and Rs. 5,556.60 in three years, interest being compounded annually. Find : the rate of interest.
A certain sum amounts to Rs. 5,292 in two years and Rs. 5,556.60 in three years, interest being compounded annually. Find: the original sum.
Geeta borrowed Rs. 15,000 for 18 months at a certain rate of interest compounded semi-annually. If at the end of six months it amounted to Rs. 15,600; calculate :
(i) the rate of interest per annum.
(ii) the total amount of money that Geeta must pay at the end of 18 months in order to clear the account.
On a certain sum of money, invested at the rate of 10 percent per annum compounded annually, the interest for the first year plus the interest for the third year is Rs. 2,652. Find the sum.
Find the sum on which the difference between the simple interest and compound interest at the rate of 8% per annum compounded annually would be Rs. 64 in 2 years.
A sum of Rs. 8,000 is invested for 2 years at 10% per annum compound interest. Calculate:
(i) interest for the first year.
(ii) principal for the second year.
(iii) interest for the second year.
(iv) the final amount at the end of the second year
(v) compound interest earned in 2 years.
A man borrowed Rs. 20,000 for 2 years at 8% per year compound interest. Calculate :
(i) the interest of the first year.
(ii) the interest of the second year.
(iii) the final amount at the end of the second year.
(iv) the compound interest of two years.
Calculate the amount and the compound interest on Rs. 10,000 in 3 years at 8% per annum.
Calculate the compound interest on Rs. 15,000 in 3 years; if the rates of interest for successive years be 6%, 8%, and 10% respectively.
Mohan borrowed Rs. 16,000 for 3 years at 5% per annum compound interest. Calculate the amount that Mohan will pay at the end of 3 years.
A man invests Rs. 9600 at 10% per annum compound interest for 3 years. Calculate :
(i) the interest for the first year.
(ii) the amount at the end of the first year.
(iii) the interest for the second year.
(iv) the interest for the third year. the interest for the first year.
Find the amount and the compound interest payable annually on the following :
Rs.25000 for 1`(1)/(2)` years at 10% per annum.
The simple interest on a certain sum for 3 years at 4% is Rs 600. Find the compound interest for the same sum at the same percent and in the same time.
The compound interest payable annually on a certain sum for 2 years is Rs 40.80 and the simple interest is Rs 40. Find the sum and the rate percent.
The difference between simple interest and compound interest compounded annually on a certain sum is Rs.448 for 2 years at 8 percent per annum. Find the sum.
The compound interest on ₹ 5000 at 12% p.a for 2 years, compounded annually is ___________
Find the compound interest on ₹ 3200 at 2.5% p.a for 2 years, compounded annually
A principal becomes ₹ 2028 in 2 years at 4% p.a compound interest. Find the principal
The time taken for ₹ 4400 to become ₹ 4851 at 10%, compounded half yearly is _______
Suppose for the principal P, rate R% and time T, the simple interest is S and compound interest is C. Consider the possibilities.
- C > S
- C = S
- C < S
Then