Advertisements
Advertisements
प्रश्न
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to
पर्याय
`pi/4`
`pi/2`
`pi/3`
`(- 3pi)/4`
MCQ
उत्तर
`pi/4`
Explanation:
`tan^-1 (x/y) - tan^-1 (x - y)/(x + y) = tan^-1 [(x/y - (x - y)/(x + y))/(1 + (x/y)((x - y)/(x + y)))]`
= `tan^-1 [((x(x + y) - y(x - y))/(y(x - y)))/((y(x + y) - x(x - y))/(y(x - y)))]`
= `tan^-1 [(x^2 + xy - xy + y^2)/(xy + y^2 + x^2 - xy)]`
∴ `tan^-1 [(x^2 + y^2)/(x^2 + y^2)] = tan^-1 1 = pi/4`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?