Advertisements
Advertisements
प्रश्न
The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval
पर्याय
`(-oo, oo) - {1/5, 1}`
`(-∞, ∞) - {1/5, 1}`
`(-∞, ∞)`
`(-oo, oo)`
`(-oo, oo) - {1}`
`(-∞, ∞) - {1}`
None of these
None of these
उत्तर १
`(-oo, oo)`
Explanation:
f(x) is defined if x2 + x – 6 = 0
i.e. (x + 3)(x – 2) ≠ 0
i.e. x ≠ – 3, 2
∴ Domain (f) = `(- oo, oo) - {- 3, 2}`
Let y = `(x^2 - 3x + 2)/(x^2 + x - 6)`
⇒ x2y + xy – 6y = x2 – 3x + 2
⇒ x2(y – 1) + x(y + 3) – (6y + 2) = 0
For x to be real, (y + 3)2 + 4(y – 1)(6y + 2) ≥ 0
⇒ 25y2 – 10y + 1 ≥ 0
i.e. (5y – 1)2 ≥ 0
Which is true for all real y.
Range of f = `(-oo, oo)`
उत्तर २
`bb((-∞, ∞)`
Explanation:
f(x) is defined if x2 + x – 6 ≠ 0
i.e. (x + 3)(x – 2) ≠ 0 i.e x ≠ –3, 2
∴ Domain (f) = (–∞, ∞) – {–3, 2}
Let y = `(x^2 - 3x + 2)/(x^2 + x - 6)`
`\implies` x2y + xy – 6y = x2 – 3x + 2
`\implies` x2(y – 1) + x(y + 3) – (6y + 2) = 0
For x to be real, (y + 3)2 + 4(y – 1)(6y + 2) ≥ 0
`\implies` 25y2 – 10y + 1 ≥ 0 i.e (5y – 1)2 ≥ 0
Which is true for all real y.
Range of f = (–∞, ∞)