मराठी

Two Circular Cylinders of Equal Volumes Have Their Heights in the Ratio 1 : 2. Find the Ratio of Their Radii. - Mathematics

Advertisements
Advertisements

प्रश्न

Two circular cylinders of equal volumes have their heights in the ratio 1 : 2. Find the ratio of their radii.

बेरीज

उत्तर

Given data is as follows:

`h_1/h_2 = 1/2`

Volume of cylinder1 = Volume of cylinder2

We have to find the ratio of their radii

Since the volumes of the two cylinders are equal,

`"Volume of cylinder"_1/"  Volume of cylinder"_2=1`

`(pir_1^2h_1)/(pir_2^2 h_2 )= 1`

`(r_1/r_2)^2(h_1/h_2)=1`

But it is given that,

`h_1/h_2=1/2`

Therefore,

`(r_1/r_2)^2 xx 1/2 = 1`

          ` (r_1/r_2)^2= 2`

         ` (r_1/r_2)^2 = 2/1`

                `r_1/r_2 = sqrt(2)/1`

Therefore, the ratio of the radii of the two cylinders is `sqrt(2) : 1`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Surface Areas and Volume of a Circular Cylinder - Exercise 19.2 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 19 Surface Areas and Volume of a Circular Cylinder
Exercise 19.2 | Q 15 | पृष्ठ २१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×