Advertisements
Advertisements
प्रश्न
Two concentric circles of radii a and b (a > b) are given. Find the length of the chord of the larger circle which touches the smaller circle.
पर्याय
`sqrt(a^2 + b^2)`
`sqrt(a^2 - b^2)`
`2sqrt(a^2 - b^2)`
`2sqrt(a^2 + b^2)`
MCQ
उत्तर
`underline(2sqrt(a^2 - b^2))`
Explanation:
Let O be the common center of the two circles and AB be the chord of the larger circle which touches the smaller circle at C.
Join OA and OC.
Then OC ⊥ AB
Let OA = a and OC = b.
Since OC ⊥ AB, OC bisects AB
[∵ perpendicular from the centre to a chord bisects the chord].
In right Δ ACO, we have
OA2 = OC2 + AC2 [by Pythagoras’ theorem]
⇒ AC = `sqrt("OA"^2 - "OC"^2) = sqrt(a^2 - b^2)`
∴ AB = 2AC = `2sqrt(a^2 - b^2)` [∵ C is the midpoint of AB]
i.e. Length of the chord AB = `2sqrt(a^2 - b^2)`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?