Advertisements
Advertisements
प्रश्न
Two identically-charged particles are fastened to the two ends of a spring of spring constant 100 N m−1 and natural length 10 cm. The system rests on a smooth horizontal table. If the charge on each particle is 2.0 × 10−8 C, find the extension in the length of the spring. Assume that the extension is small as compared to the natural length. Justify this assumption after you solve the problem.
उत्तर
Let the extension in the string be x.
Given:
Magnitude of the charges, q = 2.0 × 10−8 C
Separation between the charges, r = (0.1+ x) m
By Coulomb's Law, electrostatic force,
\[F = \frac{1}{4\pi \epsilon_0}\frac{q^2}{r^2}\]
The spring force due to extension x,
Electrostatic force = Spring force
\[\frac{1}{4\pi \epsilon_0} \times \frac{q^2}{\left( x + 0 . 1 \right)^2} = K\left( 0 . 1 + x \right)\]
\[ \Rightarrow \left( 0 . 1 + x \right)^3 = \frac{9 \times {10}^9 \times \left( 2 . 0 \times {10}^{- 8} \right)^2}{{10}^{- 2}}\]
\[ = \frac{36 \times {10}^9 \times {10}^{- 16}}{{10}^{- 2}}\]
\[ = 36 \times {10}^{- 5} \]
\[ \Rightarrow x = 3 . 6 \times {10}^{- 6}\] m
Yes, the assumpton is justified. As two similar charges are present at the ends of the spring so they exert repulsive force on each other.Due to the repulsive force between the charges,an extension x is produced in the spring. Springs are made up of elastic material.When a spring is extended then a restoring force acts on it which is always proportioanal to the extension produced and directed opposite to the direction of applied force.The restoring force depends on the elasticity of the material. When the extension is small then only the restoring force is proportinal to the extension.If the extension s camparable to the natural length of the spring then the restoring force will depend on higher powers of the extension produced.
APPEARS IN
संबंधित प्रश्न
- Two insulated charged copper spheres A and B have their centers separated by a distance of 50 cm. What is the mutual force of electrostatic repulsion if the charge on each is 6.5 × 10−7 C? The radii of A and B are negligible compared to the distance of separation.
- What is the force of repulsion if each sphere is charged double the above amount, and the distance between them is halved?
A particle of mass m and charge (−q) enters the region between the two charged plates initially moving along x-axis with speed vx (like particle 1 in the fig.). The length of plate is L and an uniform electric field E is maintained between the plates. Show that the vertical deflection of the particle at the far edge of the plate is qEL2/(2m`"v"_"x"^2`).
Plot a graph showing the variation of coulomb force (F) versus ,`(1/r^2)` where r is the distance between the two charges of each pair of charges: (1 μC, 2 μC) and (2 μC, − 3 μC). Interpret the graphs obtained.
A charge of 1.0 C is placed at the top of your college building and another equal charge at the top of your house. Take the separation between the two charges to be 2.0 km. Find the force exerted by the charges on each other. How many times your weight is this force?
At what separation should two equal charges, 1.0 C each, be placed, so that the force between them equals the weight of a 50 kg person?
Consider a gold nucleus to be a sphere of radius 6.9 fermi in which protons and neutrons are distributed. Find the force of repulsion between two protons situated at largest separation. Why do these protons not fly apart under this repulsion?
Find the speed of the electron in the ground state of a hydrogen atom. The description of ground state is given in the previous problem.
Two identical balls, each with a charge of 2.00 × 10−7 C and a mass of 100 g, are suspended from a common point by two insulating strings, each 50 cm long. The balls are held at a separation 5.0 cm apart and then released. Find.
(a) the electric force on one of the charged balls
(b) the components of the resultant force on it along and perpendicular to the string
(c) the tension in the string
(d) the acceleration of one of the balls. Answers are to be obtained only for the instant just after the release.
Two identical pith balls are charged by rubbing one against the other. They are suspended from a horizontal rod through two strings of length 20 cm each, the separation between the suspension points being 5 cm. In equilibrium, the separation between the balls is 3 cm. Find the mass of each ball and the tension in the strings. The charge on each ball has a magnitude 2.0 × 10−8 C.
A particle A with a charge of 2.0 × 10−6 C is held fixed on a horizontal table. A second charged particle of mass 80 g stays in equilibrium on the table at a distance of 10 cm from the first charge. The coefficient of friction between the table and this second particle is μ = 0.2. Find the range within which the charge of this second particle may lie.
Repeat the previous problem if the particle C is displaced through a distance x along the line AB.
Two identical particles, each with a charge of 2.0 × 10−4 C and mass of 10 g, are kept at a separation of 10 cm and then released. What would be the speed of the particles when the separation becomes large?
Two particles of masses 5.0 g each and opposite charges of +4.0 × 10−5 C and −4.0 × 10−5 C are released from rest with a separation of 1.0 m between them. Find the speeds of the particles when the separation is reduced to 50 cm.
Two-point charges of + 0.2 µµC and -0.2 µµC are separated by 1 o8 m. What is the value of the electric field at an axial point at a distance of 0.1 m from their mid-point?
The electric force acting between two point charges kept at a certain distance in vacuum is 16 N. If the same two charges are kept at the same distance in a medium of dielectric constant 8, the electric force acting between them is ____________ N.
The S.I unit of electric permittivity is
Identify the wrong statement in the following.
Coulomb's law correctly describes the electric force that ______
According to Coulomb's law, which is the correct relation for the following figure?
Two point charges +2 C and +6 C repel each other with a force of 12 N. If a charge of -4 C is given to each of these charges, then the force now is ______.