Advertisements
Advertisements
प्रश्न
Two stars of masses m and 2m at a distance d rotate about their common centre of mass in free space. The period of revolution is ______.
पर्याय
`2pisqrt(d^3/(3"GM"))`
`1/(2pi) sqrt((3"Gm")/d^3)`
`1/(2pi) sqrt(d^3/(3"Gm"))`
`2pisqrt((3"GM")/d^3)`
उत्तर
Two stars of masses m and 2m at a distance d rotate about their common centre of mass in free space. The period of revolution is `bb(2pisqrt(d^3/(3"GM")))`.
`"X"_"com" = (2"m"xx0+"m"."d")/(2"m"+"m") = "d"/3`
Now, applying force balance equation
Fc = Fg
⇒ `((2"m")"v"^2)/"X"_"com" = ("G"(2"m")."m")/"d"^2`
⇒ `(2"m"(omega"d"/3)^2)/("d"/3) = (2"Gm"^2)/"d"^2`
⇒ `omega^2 = ((2"Gm"^2)/"d"^2)/(2"m""d"/3)`
⇒ `omega = sqrt((2"Gm"^2)/("d"^2 .2)xx3/"md")`
⇒ `omega = sqrt((3"Gm")/"d"^3)`
⇒ `(2pi)/"T" = sqrt((3"GM")/"d"^3)`
⇒ T = `2pisqrt(d^3/(3"Gm"))`