मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएस.एस.एल.सी. (इंग्रजी माध्यम) इयत्ता १०

Use Euclid’s Division Algorithm to find the Highest Common Factor (H.C.F) of 340 and 412 - Mathematics

Advertisements
Advertisements

प्रश्न

Use Euclid’s Division Algorithm to find the Highest Common Factor (H.C.F) of 340 and 412

बेरीज

उत्तर

To find the H.C.F. of 340 and 412. Using Euclid’s division algorithm.

We get 412 = 340 × 1 + 72

The remainder 72 ≠ 0

Again applying Euclid’s division algorithm

340 = 72 × 4 + 52

The remainder 52 ≠ 0.

Again applying Euclid’s division algorithm

72 = 52 × 1 + 20

The remainder 20 ≠ 0.

Again applying Euclid’s division algorithm,

52 = 20 × 2 + 12

The remainder 12 ≠ 0.

Again applying Euclid’s division algorithm.

20 = 12 × 1 + 8

The remainder 8 ≠ 0.

Again applying Euclid’s division algorithm

12 = 8 × 1 + 4

The remainder 4 ≠ 0.

Again applying Euclid’s division algorithm

8 = 4 × 2 + 0

The remainder is zero.

Therefore H.C.F. of 340 and 412 is 4.

shaalaa.com
Euclid’s Division Algorithm
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Numbers and Sequences - Exercise 2.1 [पृष्ठ ४३]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 10 SSLC TN Board
पाठ 2 Numbers and Sequences
Exercise 2.1 | Q 6. (i) | पृष्ठ ४३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×