मराठी

Use method of contradiction to show that √3 and √5 are irrational numbers. -

Advertisements
Advertisements

प्रश्न

Use method of contradiction to show that √3 and √5 are irrational numbers.

बेरीज

उत्तर

Let us suppose that √3 and √5 are rational numbers.

∴ √3 = `a/b` and √5 = `x/y`     (Where a, b ∈ 7 and b, y ≠ 0 x, y)

Squaring both sides,

3 = `a^2/b^2`, 5 = `x^2/y^2`

3b2 = a2, 5y2 = x2

⇒ a2 and x2 are odd as 3b2 and 5y2 are odd.

⇒ a and x are odd               ...(1)

Let a = 3c, x = 5z

a2 = 9c2, x2 = 25z2

3b2 = 9c2, 5y2 = 25z2        ...(From equation)

⇒ b2 = 3c2, y2 = 5z2

⇒ b2 and y2 are odd as 3c2 and 5z2 are odd.

⇒ b and y are odd                 ...(2)

From equation (1) and (2) we get a, b, x, y are odd integers.

i.e., a, b, and x, y have common factors 3 and 5 this contradicts our assumption that `a/b` and `x/y` are rational i.e, a, b and x, y do not have any common factors other than.

⇒ `a/b` and `x/y` is not rational.

⇒ √3 and √5 and are irrational.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×