Advertisements
Advertisements
प्रश्न
Use the product of matrices `[(1,2,-3),(3,2,-2),(2,-1,1)][(0,1,2),(-7,7,-7),(-7,5,-4)]` to solve the following system of equations:
x + 2y – 3z = 6
3x + 2y – 2z = 3
2x – y + z = 2
उत्तर
Let `A = [(1,2,-3),(3,2,-2),(2,-1,1)]`
and `B = [(0,1,2),(-7,7,-7),(-7,5,-4)]`
`AB = [(1,2,-3),(3,2,-2),(2,-1,1)][(0,1,2),(-7,7,-7),(-7,5,-4)]`
`= [(0-14+21,1+14-15,2-14+12),(0-14+14,3+14-10,6-14+8),(0+7-7,2-7+5,4+7-4)]`
`= [(7,0,0),(0,7,0),(0,0,7)]`
`= 7[(1,0,0),(0,1,0),(0,0,1)]`
AB = 7I
`1/7 (AB) = I`
`1/7B = A^-1`
`A^-1 = 1/7[(0,1,2),(-7,7,-7),(-7,5,-4)]`
Now, The given system of equation is
x + 2y − 3z = 6
3x + 2y − 2z = 3
2x − y + z = 2
`[(1,2,-3),(3,2,-2),(2,-1,1)][(x),(y),(z)]=[(6),(3),(2)]`
AX = C
X = A-1 C
`x= 1/7 [(0,1,2),(-7,7,-7),(-7,5,-4)][(6),(3),(2)]` ...(from eqn 1)
`x= 1/7 [(0+3+4),(-42+21-14),(-42+15-8)]`
`x = 1/7[(7),(-35),(-35)]`
`[(x),(y),(z)]=[(1),(-5),(-5)]`
⇒ x = 1, y = −5, z = −5,