Advertisements
Advertisements
प्रश्न
Value of' 'c' of the mean value theorem for the function `f(x) = x(x - 2)`, when a = 0, b = 3/2, is
पर्याय
3/4
1/2
3/2
1/4
MCQ
उत्तर
3/4
Explanation:
`f(x) = x(x - 2), a = 0` and `b = 3/2 ⇒ x ∈ [0, 3/2]`
`f^'(x) = x(1 - 0) + (x - 2) xx 1`
`f^'(x) = x + x - 2`
`f^'(x) = 2x - 2`
At `x` = 0 ⇒ `f(0)` = 0
At `x = 3/2` ⇒ `f(3/2) = 3/2 (3/2 - 2) = - 3/4`
According to the mean value theorem,
`f^'(c) = (f(b) - f(a))/(b - a) = (f(3/2) - f(0))/(3/2 - 0)`
`2c - 2 = - 3/4 xx 2/3 = - 1/2`
`2c = - 1/2 + 2 = 3/2`
∴ `c = 3/4`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?