Advertisements
Advertisements
प्रश्न
What are overtones?
What are overtones (Two points)?
उत्तर
- The tones whose frequencies are greater than the fundamental frequency are called overtones.
- The first permitted frequency over the fundamental is referred to as the first overtone, which can either be the second or third harmonic.
APPEARS IN
संबंधित प्रश्न
Answer in brief:
What are harmonics and overtones?
A sound wave in a certain fluid medium is reflected at an obstacle to form a standing wave. The distance between two successive nodes is 3.75 cm. If the velocity of sound is 1500 m/s, find the frequency.
A pipe open at both the ends has a fundamental frequency of 600 Hz. The first overtone of a pipe closed at one end has the same frequency as the first overtone of the open pipe. How long are the two pipes?
(Given: v = 330 m/s)
A string 1m long is fixed at one end. The other end is moved up and down with frequency of 15 Hz. Due to this, a stationary wave with four complete loops gets produced on the string. Find the speed of the progressive wave which produces the stationary wave.
[Hint: Remember that the moving end is an antinode.]
A violin string vibrates with the fundamental frequency of 510 Hz. What is the frequency of the first overtone?
The equation of simple harmonic progressive wave is, y = sin π/2 (4t/0.025 – x/0.25). Where all quantities are in the S.I. system. Find the amplitude, frequency, wavelength, and velocity of the wave.
When open pipe is closed from one end third overtone of closed pipe is higher in frequency by 150 Hz, then second overtone of open pipe. The fundamental frequency of open end pipe will be ____________.
The fundamental frequency of a closed pipe is 400 Hz. If `1/3`rd pipe !s tilled with water, then the 3 frequency of 2nd harmonic of the pipe will be (neglect and correction).
In a fundamental mode the time required for the sound wave to reach upto the closed end of a pipe filled with air is 't' second. The frequency of vibration of air column is ________.
A tube closed at one end and containing air produces fundamental note of frequency 256 Hz. If the tube is open at both ends, the fundamental frequency will be ____________.
An organ pipe has a fundamental frequency of 120 Hz. Its fourth overtone is 600 Hz. Find the type of the pipe.
A pipe open at both ends and a pipe closed at one end have same length. The ratio of frequencies of their pth overtone is ______.
The fundamental frequency of sonometer wire increases by 9 Hz, if its tension is increased by 69%, keeping the length constant. The frequency of the wire is ______.
A transverse wave propagating along the string is y = 0.3 sin (x + 20t) where x, y are in metre and t in second. The linear density of the string is 1.2 x 10-4 kg/m. The tension in the string is ______.
A stretched uniform wire of length L under tension T is vibrating with frequency 'n' . A closed pipe of same length is also vibrating with same fundamental frequency 'n'. If T is increased by 16 N, it is in resonance with 2nd harmonic of same closed pipe. The initial tension in the wire is ______.
A pipe of length 85 cm is closed from one end. Find the number of possible natural oscillations of air colunm in the pipe whose frequencies lie below 1250 Hz. The velocity of sound in air is 340 m/s.
The simplest mode of a vibration of the string is called ____________.
A tuning fork with frequency 800 Hz produces resonance in a resonance column tube with upper end open and lower end closed by water surface. Successive resonances are observed at lengths 9.75 cm, 31.25 cm and 52.75 cm. The speed of sound in air is, ____________.
'n' number of waves are produced on a string in 0.5 seconds. Now the tension in a string is doubled (Keeping radius constant). The number of waves produced in 0.5 seconds for the same harmonic will be ______
The equation of vibration of a stretched string fixed at both ends and vibrating in 5th harmonic is Y = 3 sin(0.4x) cos(200πt) where 'x' and 'Y' are in cm and t in second. The length of the string is ______
The equation of simple harmonic wave is given as y = 5sin `pi/2(100t - x)`, where 'x' and 'y' are in metre and time in second. The period of the wave is ______
If the length and diameter of a wire are decreased, then for the same tension the natural frequency of stretched wire will ______.
In melde's experiment, when the tension decreases by 0.009 kg-wt, the number of loops changes from 4 to 5. The initial tension is ______.
The air column in an organ pipe closed at one end is made to vibrate so that there are 2 nodes and antinodes each. The mode of vibration is called ______
If the end correction of an open pipe is 0.8 cm, then the inner radius of that pipe will be ______.
A stretched string 0.7 m long and fixed at its ends vibrates in the second overtone of frequency 300 Hz. Find the speed of the transverse wave on the string.