Advertisements
Advertisements
प्रश्न
What is the least number by which 30375 should be multiplied to get a perfect cube?
उत्तर
The prime factors of 30375 are
3 | 30375 |
3 | 10125 |
3 | 3375 |
3 | 1125 |
3 | 375 |
5 | 125 |
5 | 25 |
5 | 5 |
1 |
= 3 x 3 x 3 x 3 x 3 x 5 x 5 x 5
= (3 x 3 x 3) x (5 x 5 x 5) x 3 x 3
Clearly, 30375 must be multiplied with 3
APPEARS IN
संबंधित प्रश्न
Find the cube root of the following number by the prime factorisation method.
512
Find the cube root of the following number by the prime factorisation method.
10648
Find the cube root of the following number by the prime factorisation method.
91125
Using the method of successive subtraction examine whether or not the following numbers is perfect cube 792 .
\[\sqrt[3]{480} = \sqrt[3]{3} \times 2 \times \sqrt[3]{. . .}\]
\[\sqrt[3]{\frac{27}{125}} = \frac{. . .}{5}\]
\[\sqrt[3]{\frac{729}{1331}} = \frac{9}{. . .}\]
Evaluate:
\[\sqrt[3]{96} \times \sqrt[3]{144}\]
Find The cube root of the numbers 3048625, 20346417, 210644875, 57066625 using the fact that 3048625 = 3375 × 729 .
Making use of the cube root table, find the cube root
732 .