मराठी

Which of the following equations has y=c1ex+c2e-x as the general solution? -

Advertisements
Advertisements

प्रश्न

Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?

पर्याय

  • `(d^2y)/(dx^2) + y` = 0

  • `(d^2y)/(dx^2) - y` = 0

  • `(d^2y)/(dx^2) + 1` = 0

  • `(d^2y)/(dx^2) - 1` = 0

MCQ

उत्तर

`(d^2y)/(dx^2) - y` = 0

Explanation:

Family of curvels is `y = c_1e^x + c_2e^-x`  ......(1)

Differentiating, `y^1 = c_1e^x - c_2e^-x`

`y^11 = c_1e^x + c_2e^-x = y`

∴ `y^11 - y` = 0

Solution is `(d^2y)/(dx^2) - y` = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×