Advertisements
Advertisements
प्रश्न
Write the cubes of 5 natural numbers which are multiples of 3 and verify the followings:
'The cube of a natural number which is a multiple of 3 is a multiple of 27'
उत्तर
Five natural numbers, which are multiples of 3, are 3, 6, 9, 12 and 15.
Cubes of these five numbers are:
\[3^3 = 3 \times 3 \times 3 = 27\]
\[ 6^3 = 6 \times 6 \times 6 = 216\]
\[ 9^3 = 9 \times 9 \times 9 = 729\]
\[ {12}^3 = 12 \times 12 \times 12 = 1728\]
\[ {15}^3 = 15 \times 15 \times 15 = 3375\]
Now, let us write the cubes as a multiple of 27. We have:
\[27 = 27 \times 1\]
\[216 = 27 \times 8\]
\[729 = 27 \times 27\]
\[1728 = 27 \times 64\]
\[3375 = 27 \times 125\]
It is evident that the cubes of the above multiples of 3 could be written as multiples of 27. Thus, it is verified that the cube of a natural number, which is a multiple of 3, is a multiple of 27.
APPEARS IN
संबंधित प्रश्न
Which of the following are cubes of even natural numbers?
216, 512, 729, 1000, 3375, 13824
What is the smallest number by which the following number must be multiplied, so that the products is perfect cube?
1323
By which smallest number must the following number be divided so that the quotient is a perfect cube?
243000
What happens to the cube of a number if the number is multiplied by 3?
Which of the following number is not perfect cubes?
64
Find the smallest number which when multiplied with 3600 will make the product a perfect cube. Further, find the cube root of the product.
Show that: \[\sqrt[3]{27} \times \sqrt[3]{64} = \sqrt[3]{27 \times 64}\]
Show that:
\[\frac{\sqrt[3]{- 512}}{\sqrt[3]{343}} = \sqrt[3]{\frac{- 512}{343}}\]
Find the cube-root of `125/216`
Find the cube-root of 9.261