मराठी

Write the Minor and Cofactor of Element of the First Column of the Following Matrix and Hence Evaluate the Determinant: a = ⎡ ⎢ ⎣ 1 a B C 1 B C a 1 C a B ⎤ ⎥ ⎦ - Mathematics

Advertisements
Advertisements

प्रश्न

Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{bmatrix}\]

उत्तर

\[M_{11} = \begin{vmatrix}b & ca \\ c & ab\end{vmatrix} = a b^2 - c^2 a = a\left( b^2 - c^2 \right)\]
\[ M_{21} = \begin{vmatrix}a & bc \\ c & ab\end{vmatrix} = a^2 b - c^2 b = b\left( a^2 - c^2 \right)\]
\[ M_{31 =} \begin{vmatrix}a & bc \\ b & ca\end{vmatrix} = a^2 c - b^2 c = c\left( a^2 - b^2 \right)\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} M_{11} = a\left( b^2 - c^2 \right)\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} M_{21} = - b\left( a^2 - c^2 \right)\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} M_{31} = c\left( a^2 - b^2 \right)\]
\[D = 1 . a\left( b^2 - c^2 \right) - a\left( ab - ca \right) + b . c\left( c - b \right)\]
\[ = a b^2 - a c^2 - a^2 b + a^2 c + c^2 b - b^2 c\]
\[ = a^2 \left( c - b \right) + b^2 \left( a - c \right) + c^2 \left( b - a \right)\]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - Exercise 6.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 6 Determinants
Exercise 6.1 | Q 1.4 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Write Minors and Cofactors of the elements of following determinants:

`|(2,-4),(0,3)|`


Write Minors and Cofactors of the elements of following determinants:

`|(a,c),(b,d)|`


Write Minors and Cofactors of the elements of following determinants:

`|(1,0,0),(0,1,0),(0,0,1)|`


Write Minors and Cofactors of the elements of following determinants:

`|(1,0,4),(3,5,-1),(0,1,2)|`


Using Cofactors of elements of second row, evaluate `triangle = |(5,3,8),(2,0,1),(1,2, 3)|`


Using Cofactors of elements of third column, evaluate `triangle = |(1,x,yz),(1,y,zx),(1,z,xy)|`


Using matrices, solve the following system of equations :

2x - 3y + 5z = 11

3x + 2y - 4z = -5

x + y - 2z = -3


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}- 1 & 4 \\ 2 & 3\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}0 & 2 & 6 \\ 1 & 5 & 0 \\ 3 & 7 & 1\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}a & h & g \\ h & b & f \\ g & f & c\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}2 & - 1 & 0 & 1 \\ - 3 & 0 & 1 & - 2 \\ 1 & 1 & - 1 & 1 \\ 2 & - 1 & 5 & 0\end{bmatrix}\]


Write the adjoint of the matrix \[A = \begin{bmatrix}- 3 & 4 \\ 7 & - 2\end{bmatrix} .\]


If Cij is the cofactor of the element aij of the matrix \[A = \begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix}\], then write the value of a32C32.


Write \[A^{- 1}\text{ for }A = \begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


Find A–1 if A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]` and show that A–1 = `("A"^2 - 3"I")/2`.


If A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`, find A–1. Using A–1, solve the system of linear equations x – 2y = 10 , 2x – y – z = 8 , –2y + z = 7.


Using matrix method, solve the system of equations
3x + 2y – 2z = 3, x + 2y + 3z = 6, 2x – y + z = 2.


If A is a matrix of order 3 × 3, then number of minors in determinant of A are ______.


The sum of the products of elements of any row with the co-factors of corresponding elements is equal to ______.


If A `= [(0,1,1),(1,0,1),(1,1,0)] "then"  ("A"^2 - 3"I")/2 =` ____________.


Evaluate the determinant `Delta = abs (("log"_3  512, "log"_4  3),("log"_3  8, "log"_4  9))`


`abs(("cos"  15°, "sin"  15°),("sin"  75°, "cos"  75°))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×