Advertisements
Advertisements
प्रश्न
(x + 5) प्रेक्षणों का योग x4 – 625 है। इन प्रेक्षणों का माध्य ज्ञात कीजिए।
उत्तर
चूंकि, (x + 5) प्रेक्षणों का योग = x4 – 625
हम जानते हैं कि n प्रेक्षण का माध्य x1, x2, x3, ……, xn से दिया जाता है,
`(x_1 + x_2 + x_3 + ...... + x_n)/n`
प्रेक्षणों का माध्य ज्ञात कीजिए।
∴ (x + 5) प्रेक्षणों का माध्य = `((x + 5) "प्रेक्षणों का योग")/(x + 5)`
= `(x^4 - 625)/(x + 5)`
= `(x^2 xx x^2 - 25 xx 25)/(x + 5)`
= `((x^2)^2 - (25)^2)/((x + 5))`
= `((x^2 - 25)(x^2 + 25))/((x + 5))`
= `((x xx x - 5 xx 5)(x^2 + 25))/(x + 5)`
= `((x - 5)(x + 5)(x^2 + 25))/(x + 5)`
= (x − 5)(x2 + 25)
इस प्रकार, (x + 5) प्रेक्षणों का माध्य (x − 5)(x2 + 25) है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
− 4a2 + 4ab − 4 ca
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
x2yz + xy2z + xyz2
निम्न के गुणनखंड कीजिए -
x2 + 18x + 65
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
x2 − 9
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
49x2 – 36y2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`x^2/8 - y^2/18`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`(4x^2)/9 - (9y^2)/16`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`1/36a^2b^2 - 16/49b^2c^2`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
9x2 – (3y + z)2
एक वृत्त का क्षेत्रफल व्यंजक πx2 + 6πx + 9π से दिया जाता है। वृत्त की त्रिज्या ज्ञात कीजिए।