Advertisements
Advertisements
प्रश्न
Zeroes of the quadratic polynomial x2 − 3x + 2 are α and β. Construct a quadratic polynomial whose zeroes are 2α + 1 and 2β + 1.
बेरीज
उत्तर
Given that α and β are zeroes of the Quadratic Polynomial x2 − 3x + 2,
∴ Sum of roots `(α + β) = (-"b")/"a"`
= `(-(-3))/1`
= 3
∴ Product of roots (αβ) = `"c"/"a"`
= `2/1`
= 2
Quadratic Polynomial whose zeroes are 2α + 1 and 2β + 1 is:
Sum of roots = 2α + 1 + 2β + 1
= 2α + 2β + 2
= 2(α + β + 1)
= 2(3 + 1) ...[∵ α + β = 3]
= Product of roots = (2α + 1) (2β + 1)
= 4αβ + 2α + 2β + 1
= 4αβ + 2(α + β) + 1
= 4 × 2 + 2(3) + 1
= 8 + 6 + 1
= 15
(∵ αβ = 2 and α + β = 3 from above)
∴ Quadratic Polynomial ⇒ x2 − (Sum of the roots x + Product) = 0
⇒ x2 − 8x + 15
= 0
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?