Advertisements
Advertisements
Question
\[0 . \bar{{001}}\] when expressed in the form \[\frac{p}{q}\] (p, q are integers, q ≠ 0), is
Options
\[\frac{1}{1000}\]
\[\frac{1}{100}\]
\[\frac{1}{1999}\]
\[\frac{1}{999}\]
Solution
Given that `0 overline.001`
Now we have to express this number into `p/q` form
Let x = `0.overline001`
`= 0+1/999`
`= 1/999`
APPEARS IN
RELATED QUESTIONS
Visualise `4.bar26` on the number line, up to 4 decimal places.
Visualise the representation of `5.3bar7` on the number line upto 5 decimal places, that is upto 5.37777.
The number 0.318564318564318564 ........ is:
The number \[1 . \bar{{27}}\] in the form \[\frac{p}{q}\] , where p and q are integers and q ≠ 0, is
Represent the following numbers on the number line
5.348
Represent the following numbers on the number line
`4.bar(73)` upto 4 decimal places
Represent the following number on the number line:
`(-3)/2`
Locate `sqrt(5), sqrt(10)` and `sqrt(17)` on the number line.
Represent geometrically the following number on the number line:
`sqrt(5.6)`
Represent geometrically the following number on the number line:
`sqrt(8.1)`