Advertisements
Advertisements
Question
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
Options
`pi/4`log2
`pi/4` log `1/2`
`pi/8`log2
`pi/8`log`1/2`
MCQ
Fill in the Blanks
Solution
`int_0^(pi"/"4)` log(1 + tanθ) dθ = `underline(pi/8log2)`
Explanation:
Let I = `int_0^(pi"/"4)`log(1 + tanθ) dθ
= `int_0^(pi/4) log[1 + tan(pi/4 - theta)]`dθ .................`[∵ int_0^af(x)dx = int_0^af(a - x)dx]`
= `int_0^(pi/4) log(1 + (1 - tantheta)/(1 + tantheta))`dθ
= `int_0^(pi/4) log 2d theta - int_0^(pi/4) log(1 + tantheta)d theta`
∴ 2I = `int_0^(pi/4) log 2d theta ⇒ "I" = (log 2)/2 [theta]_0^(pi/4) = pi/8 log 2`
shaalaa.com
Is there an error in this question or solution?