Advertisements
Advertisements
Question
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
Options
`log_e 2/3`
loge3
`1/2log_e 4/3`
`log_e 4/3`
MCQ
Fill in the Blanks
Solution
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals `underlinebb(log_e 4/3)`.
Explanation:
Let tanx = t
⇒ sec2xdx = dt
At, `{{:(x = 0",", t = 0),(x = π/4",", t = 1):}`
I = `int_0^1 (dt)/((1 + t)(2 + t))`
= `int_0^1(1/(1 + t) - 1/(2 + t))dt`
= `[ℓn(1 + t) - ℓn(2 + t)]_0^1`
= ln2 – ln3 + ln2
= `ln 4/3`
= `log_e 4/3`
shaalaa.com
Is there an error in this question or solution?