Advertisements
Advertisements
Question
`int_0^pi x sin^2x dx` = ______
Options
`pi^2/2`
`(3pi^2)/2`
`pi^2/3`
`pi^2/4`
MCQ
Fill in the Blanks
Solution
`int_0^pi x sin^2x dx` = `underline(pi^2/4)`
Explanation:
Let I = `int_0^pi x sin^2x dx` ............(i)
∴ I = `int_0^pi (pi - x)sin^2x dx` .............(ii) `[∵ int_0^a f(x)dx = int_0^af(a - x)dx]`
Adding (i) and (ii), we get
2I = `int_0^pi pi sin^2x dx`
= `pi int_0^pi (1 - cos2x)/2 dx`
∴ 2I = `pi/2[x - (sin2x)/2]_0^pi`
= `pi/2(pi - 0)`
∴ I = `pi^2/4`
shaalaa.com
Is there an error in this question or solution?