Advertisements
Advertisements
Question
`int_0^1 1/((x^2 + 16)(x^2 + 25))dx` = ______.
Options
`1/5[1/4 tan^-1(1/4) - 1/5 tan^-1(1/5)]`
`1/9[1/4 tan^-1(1/4) - 1/5 tan^-1(1/5)]`
`1/4[1/4 tan^-1(1/4) - 1/5 tan^-1(1/5)]`
`1/9[1/5 tan^-1(1/4) - 1/5 tan^-1(1/5)]`
MCQ
Fill in the Blanks
Solution
`int_0^1 1/((x^2 + 16)(x^2 + 25))dx` = `underlinebb(1/9[1/4 tan^-1(1/4) - 1/5 tan^-1(1/5)])`.
Explanation:
Let I = `int_0^1 (dx)/((x^2 + 16)(x^2 + 25))`
= `1/9int_0^1(1/(x^2 + 16) - 1/(x^2 + 25))dx`
= `1/9(1/4tan^-1 x/4 - 1/5 tan^-1 x/5)_0^1`
= `1/9[1/4tan^-1 1/4 - 1/5 tan^-1 1/5]`
shaalaa.com
Indefinite Integration
Is there an error in this question or solution?