Advertisements
Advertisements
Question
`int_0^1 x tan^-1 x dx` = ______.
Options
`π/4 + 1/2`
`π/4 - 1/2`
`1/2 - π/4`
`-π/4 - 1/2`
MCQ
Fill in the Blanks
Solution
`int_0^1 x tan^-1 x dx` = `underlinebb(π/4 - 1/2)`.
Explanation:
`int_0^1 x tan^-1 x dx`
= `[tan^-1x intx dx]_0^1 - int_0^1(d/dx(tan^-1x)intx dx)dx`
= `[tan^-1 x x^2/2]_0^1 - int_0^1(1/(1 + x^2). x^2/2)dx`
= `(1/2 tan^-1 1 - 0) - 1/2int_0^1(1 + x^2 - 1)/(1 + x^2)dx`
= `1/2(π/4) - 1/2int_0^1(1 - 1/(1 + x^2))dx`
= `π/8 - 1/2[x - tan^-1x]_0^1`
= `π/8 - 1/2[1 - tan^-1 1 - 0 + 0]`
= `π/8 - 1/2[1 - π/4]`
= `π/4 - 1/2`
shaalaa.com
Is there an error in this question or solution?