Advertisements
Advertisements
Question
`int_0^4 1/(1 + sqrtx)`dx = ______.
Options
`log (e^4/6)`
`log (e^4/3)`
`log (e^4/9)`
`log (e^4/4)`
MCQ
Fill in the Blanks
Solution
`int_0^4 1/(1 + sqrtx)`dx = `underlinebb(log (e^4/9))`
Explanation:
Let I = `int_0^4 1/(1 + sqrtx)`dx
Putting, `1 + sqrtx` = t
`=> 1/(2sqrtx) "dx" = "dt"`
`=> "dx" = 2sqrtx "dt" => "dx" = 2("t" - 1)"dt"`
at x = 0, t = 1 and x = 4, t = 3
Now,
I = `int_1^3 (2("t" - 1)"dt")/"t"`
`= 2 int_1^3 (1 - 1/"t") "dt"`
`= 2["t" - log |"t"|]_1^3`
= 2[(3 - log 3) - (1 - log 1)]
= 2[2 - log 3] ....(∵ log 1 = 0)
`= 4 + 2log (1/3) = 4 log e + log (1/9)`
`= log e^4 + log (1/9)`
`= log (e^4/9)`
shaalaa.com
Is there an error in this question or solution?