Advertisements
Advertisements
Question
`int_0^4 x[x] dx`, where [.] denotes the greatest integer function, equals ______
Options
`13/2`
17
`21/2`
19
MCQ
Fill in the Blanks
Solution
`int_0^4 x[x] dx`, where [.] denotes the greatest integer function, equals 17.
Explanation:
`int_0^4 x [x] dx = int_0^1 x [x] dx + int_1^2 x [x] dx + int_2^3 x[x] dx + int_3^4 x[x] dx`
= `int_0^1 0 dx + int_1^2 x dx + int_2^3 2x dx + int_3^4 3x dx`
= `[x^2/2]_1^2 + [x^2]_2^3 + 3[x^2/2]_3^4`
= `3/2 + 5 + 21/2 = 17`
shaalaa.com
Algebra of Functions
Is there an error in this question or solution?