English

∫0log5exex-1ex+3 dx = ______ -

Advertisements
Advertisements

Question

`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = ______ 

Options

  • 3 + 2π

  • 4 - π

  • 2 + π

  • 4 + π

MCQ
Fill in the Blanks

Solution

`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = 4 - π.

Explanation:

Put ex - 1 = t2 ⇒ ex dx = 2t dt

∴ `int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = `int_0^2 (2t^2dt)/(t^2 + 4) = 2int_0^2(1 - 4/(t^2 + 4))dt`

= `2[t - 4(1/2tan^-1  t/2)]_0^2`

= 4 - π

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×