Advertisements
Advertisements
Question
`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = ______
Options
3 + 2π
4 - π
2 + π
4 + π
MCQ
Fill in the Blanks
Solution
`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = 4 - π.
Explanation:
Put ex - 1 = t2 ⇒ ex dx = 2t dt
∴ `int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = `int_0^2 (2t^2dt)/(t^2 + 4) = 2int_0^2(1 - 4/(t^2 + 4))dt`
= `2[t - 4(1/2tan^-1 t/2)]_0^2`
= 4 - π
shaalaa.com
Is there an error in this question or solution?