Advertisements
Advertisements
Question
`int 1/(x^2 + 1)^2 dx` = ______.
Options
`tan^-1 x - 1/(2x(x^2 + 1)) + c`
`1/2tan^-1 x + x/(2(x^2 + 1)) + c`
`tan^-1 x + x/(x^2 + 1) + c`
`tan^-1 x + 1/(2(x^2 + 1)) + c`
MCQ
Fill in the Blanks
Solution
`int 1/(x^2 + 1)^2 dx` = `underlinebb(1/2tan^-1 x + x/(2(x^2 + 1)) + c)`.
Explanation:
Let I = `int 1/(x^2 + 1)^2 dx`
Put x = tan θ
`\implies` dx = sec2θ dθ.
`\implies I = int (sec^2θ dθ)/(tan^2θ + 1)^2 = int (sec^2θ)/(sec^4θ) dθ`
`\implies I = intcos^2θ dθ = 1/2 int (cos2θ + 1)dθ`
`\implies I = 1/4 sin 2θ + θ/2 + c` ...(1)
∵ tan θ = x
`\implies` sin θ = `x/sqrt(1 + x^2)` and cos θ = `1/sqrt(1 + x^2)`.
`\implies` sin 2θ = 2 sin θ cos θ = `(2x)/((1 + x^2))`.
∴ I = `1/2. x/((1 + x^2)) + 1/2 tan^-1 x + c`.
shaalaa.com
Is there an error in this question or solution?