Advertisements
Advertisements
Question
`int1/(4 + 3cos^2x)dx` = ______
Options
`1/sqrt7 tan^-1((2tanx)/sqrt7) + c`
`1/(2sqrt7) tan^-1((2tanx)/sqrt7) + c`
`1/(5sqrt7) tan^-1((2tanx)/sqrt7) + c`
`1/(2sqrt7) tan^-1((sqrt7tanx)/2) + c`
MCQ
Fill in the Blanks
Solution
`int1/(4 + 3cos^2x)dx` = `underline(1/(2sqrt7) tan^-1((2tanx)/sqrt7) + c)`
Explanation:
Let I = `int1/(4 + 3cos^2x)dx`
= `intsec^2x/(4sec^2x + 3)dx`
= `intsec^2x/(4(1 + tan^2x) + 3)dx`
= `intsec^2x/(4tan^2x + 7)dx`
Put tan x = t ⇒ sec2x dx = dt
∴ I = `intdt/(4t^2 + 7)`
= `1/4int dt/(t^2 + (sqrt7/2)^2)`
= `1/4 . 1/(sqrt7/2) tan^-1(1/(sqrt7/2)) + c`
= `1/(2sqrt7) tan^-1((2t)/sqrt7) + c`
∴ I = `1/(2sqrt7) tan^-1((2tanx)/sqrt7) + c`
shaalaa.com
Is there an error in this question or solution?