Advertisements
Advertisements
Question
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
Options
`(7pi)/36`
`(5pi)/36`
`(7pi)/18`
`(5pi)/18`
MCQ
Solution
`(7pi)/18`
Explanation:
Let I = `int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx
`= 2 int_(pi/18)^((4pi)/9) (sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx ...(i)
`= 2 int_(pi/18)^((4pi)/9) sqrt(sin ((4pi)/9 + pi/18 - x))/((sqrt(sin (4pi)/9 + pi/8 - x)) + sqrt(cos ((4pi)/ 9 + pi/8 - x)))` ....`(because int_"a"^"b" "f"(x) "dx" = int_"a"^"b" "f"("a + b" - x) "dx")`
`=> "I" = 2 int_(pi/18)^((4pi)/9) sqrt(cos x)/(sqrt(cos x) + sqrt(sin x))`dx ....(ii)
On adding Eqs. (i) and (ii), we get
2I = `2 int_(pi/18)^((4pi)/9) "dx" = 2[x]_(pi/18)^((4pi)/9)`
`= 2[(4pi)/9 - pi/18]`
`= 2((7pi)/18)`
`=> "I" = (7pi)/18`
shaalaa.com
Is there an error in this question or solution?