Advertisements
Advertisements
Question
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
Options
`1/4log(2x^2 - 2x + 3) - sqrt(5)/2 tan^-1((2x - 1)/sqrt(5)) + C`
`3/4log(2x^2 - 2x + 3) - sqrt(5)/2 tan^-1((2x - 1)/sqrt(5)) + C`
`3/4log(2x^2 - 2x + 3) - sqrt(5)/2 tan^-1((4x - 2)/sqrt(5)) + C`
`1/4log(2x^2 - 2x + 3) - sqrt(5)/2 tan^-1((4x - 2)/sqrt(5)) + C`
MCQ
Fill in the Blanks
Solution
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals `underlinebb(3/4log(2x^2 - 2x + 3) - sqrt(5)/2 tan^-1((2x - 1)/sqrt(5)) + C)`.
Explanation:
I = `int(3x + 1)/(2x^2 - 2x + 3)dx`
= `3/4int(4x - 2)/(2x^2 - 2x + 3)dx + 5/2int1/(2x^2 - 2x + 3)dx`
= `3/4log(2x^2 - 2x + 3) + 5/4int1/((x - 1/2)^2 + 5/4)dx`
= `3/4log(2x^2 - 2x + 3) + sqrt(5)/2tan^-1((2x - 1)/sqrt(5)) + c`
shaalaa.com
Is there an error in this question or solution?