Advertisements
Advertisements
Question
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
Options
`sqrt2`
`sqrt2 - 1`
`1/(sqrt2-1)`
`sqrt2 + 1`
MCQ
Fill in the Blanks
Solution
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =underline (sqrt2 - 1)`.
Explanation:
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx`
`=int_(pi/4)^(pi/2) sqrt((sinx - cosx)^2) dx`
`=int_(pi/4)^(pi/2) (sinx - cosx) dx` `...[because x in (pi/4,pi/2) therefore sinx-cosx>0]`
`=[-cosx-sinx]_(pi/4)^(pi/2)`
`=[-cos(pi/2)-sin(pi/2)]-[-cos(pi/4)-sin(pi/4)]`
`=(0-1)-(-1/sqrt2-1/sqrt2)`
`=sqrt2-1`
shaalaa.com
Is there an error in this question or solution?