English

∫(4ex-252ex-5)dx=Ax+Blog(2ex-5)+c, then ______. -

Advertisements
Advertisements

Question

`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.

Options

  • A = 5 and B = 3

  • A = 5 and B = –3

  • A = –5 and B = 3

  • A = –5 and B = –3

MCQ
Fill in the Blanks

Solution

`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then A = 5 and B = –3.

Explanation:

Consider, I = `int((4e^x - 25)/(2e^x - 5))dx`

= `int (4e^x)/(2e^x - 5)dx - int 25/(2e^x - 5)dx`

= `4int e^x/(2e^x - 5)dx - 25int e^-x/(2 - 5e^-x)dx`

Let 2ex – 5 = u and 2 – 5e–x = v

`\implies` 2exdx = du and 5e–x dx = dv

`\implies` exdx = `(du)/2` and e–x dx = `(dv)/5`

So, I = `4int (du)/(2u) - 25int (du)/(5v)`

= 2 log u – 5 log v + c

= 2 log(2ex – 5) – 5 log (2 – 5e–x) + c

= `2 log(2e^x - 5) - 5 log((2e^x - 5)/e^x) + c`

= –3 log (2ex – 5) + 5x + c

Therefore, I = 5x – 3 log(2ex – 5) + c

As, I = Ax + B log(2ex – 5) + c

Hence, A = 5 and B = –3

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×