Advertisements
Advertisements
Question
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
Options
A = 5 and B = 3
A = 5 and B = –3
A = –5 and B = 3
A = –5 and B = –3
Solution
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then A = 5 and B = –3.
Explanation:
Consider, I = `int((4e^x - 25)/(2e^x - 5))dx`
= `int (4e^x)/(2e^x - 5)dx - int 25/(2e^x - 5)dx`
= `4int e^x/(2e^x - 5)dx - 25int e^-x/(2 - 5e^-x)dx`
Let 2ex – 5 = u and 2 – 5e–x = v
`\implies` 2exdx = du and 5e–x dx = dv
`\implies` exdx = `(du)/2` and e–x dx = `(dv)/5`
So, I = `4int (du)/(2u) - 25int (du)/(5v)`
= 2 log u – 5 log v + c
= 2 log(2ex – 5) – 5 log (2 – 5e–x) + c
= `2 log(2e^x - 5) - 5 log((2e^x - 5)/e^x) + c`
= –3 log (2ex – 5) + 5x + c
Therefore, I = 5x – 3 log(2ex – 5) + c
As, I = Ax + B log(2ex – 5) + c
Hence, A = 5 and B = –3