Advertisements
Advertisements
Question
`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.
Options
26
28
29
30
Solution
`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to 29.
Explanation:
Let A = 50 tan
`(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))`
Let B = `tan(1/2tan^-1(2sqrt(2)))`
Let 2θ = `tan^-1(2sqrt(2));2θ ∈ (- π/2, π/2)`
∴ tanθ = `2sqrt(2)`
⇒ `(2tanθ)/(1 - tan^2θ) = 2sqrt(2)` ...(i)
⇒ `2sqrt(2) tan^2θ + 2tanθ - 2sqrt(2)` = 0
⇒ `2sqrt(2) tan^2θ + 4tanθ - 2tanθ - 2sqrt(2)` = 0
⇒ `(tanθ + sqrt(2))(2sqrt(2)tanθ - 2)` = 0
⇒ `tanθ = - sqrt(2)` or `1/sqrt(2)`
∵ `θ ∈ (-π/4, π/4)`
∴ tanθ = `-sqrt(2)` is not possible
So, tanθ = `1/sqrt(2)`
∴ B = `1/sqrt(2)`
Now, `cos^-1(1/sqrt(5))` = tan–1(2)
Let C = `tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5)))`
⇒ C = `tan(tan^-1(1/2) + 2tan^-1(1/2) + 2tan^-1(2))`
⇒ C = `tan(tan^-1(1/2) + 2[tan^-1((1/2 + 2)/(1 - 1))])`
⇒ C = `tan(tan^-1(1/2) + 2(π/2))`
⇒ C = `(π + tan^-1(1/2))`
⇒ C = `tan(tan^-1(1/2))`
⇒ C = `1/2`
∴ A = `50(1/2) + 4sqrt(2)(1/sqrt(2))`
⇒ A = 25 + 4 = 29