English

∫π53π10[tanxtanx+cotx]dx = ? -

Advertisements
Advertisements

Question

`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?

Options

  • `(3pi)/10`

  • `pi/20`

  • `pi/2`

  • `pi/5`

MCQ

Solution

`pi/5`

Explanation:

Let I = `int_(pi/5)^((3pi)/10) (tan x)/(tan x + cot x)`dx

I = `int_(pi/5)^((3pi)/10) (tan ((3pi)/10 + pi/5 - x))/(tan ((3pi)/10 + pi/5 - x) + cot ((3pi)/10 + pi/5 - x))`

I = `int_(pi/5)^((3pi)/10) (cot x)/(cot x + tan x)`dx

2I = `int_(pi/5)^((3pi)/10) ((tan x + cot x)/(tan x + cot x)) "dx" = int_(pi/5)^((3pi)/10)`dx

I = `1/2((3pi)/10 - pi/5) = pi/20`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×