Advertisements
Advertisements
Question
`veca, vecb` and `vecc` are perpendicular to `vecb + vecc, vecc + veca` and `veca + vecb` respectively and if `|veca + vecb|` = 6, `|vecb + vecc|` = 8 and `|vecc + veca|` = 10, then `|veca + vecb + vecc|` is equal to
Options
`5sqrt(2)`
50
`10sqrt(2)`
10
Solution
10
Explanation:
`|veca + vecb|` = 6 ⇒ `|veca|^2 + |vecb|^2 + 2veca.vecb` = 36 ......(i)
Similarly, `|vecb|^2 + |vecc|^2 + 2vecb.vecc` = 64 .....(ii)
And `|vecc|^2 + |veca|^2 + 2vecc.veca` = 100 ......(iii)
On adding equations (i), (ii) and (iii), we get
`|veca|^2 + |vecb|^2 + |vecc|^2 + (veca.vecb + vecb.vecc + vecc.veca)` = 100 ......(iv)
`|veca|^2 + |vecb|^2 + |vecc|^2` = 100 ......`(because veca.vecb + vecb.vecc + vecc.veca)`
Now, `|veca + vecb + vecc|^2 = |veca|^2 + |vecb|^2 + |vecc|^2 + 2(veca.vecb + vecb.vecc + vecc.veca)`
⇒ `|veca + vecb + vecc|^2` = 100
⇒ `|veca + vecb + vecc|` = 10