Advertisements
Advertisements
Question
A card is drawn at random from a pack of 100 cards numbered 1 to 100. The probability of drawing a number which is a square is
Options
1/5
2/5
1/10
none of these
Solution
1/10
Clearly, the sample space is given by
S = {1, 2, 3, 4, 5... 97, 98, 99, 100}
∴ n(S) = 100
Let E = event of getting a square.
Then E = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}
∴ n(E) = 10
Hence, required probability = \[\frac{n\left( E \right)}{n\left( S \right)} = \frac{10}{100} = \frac{1}{10}\]
APPEARS IN
RELATED QUESTIONS
Describe the sample space for the indicated experiment: A coin is tossed three times.
Describe the sample space for the indicated experiment: A die is thrown two times.
Describe the sample space for the indicated experiment: A coin is tossed four times.
A coin is tossed. If the out come is a head, a die is thrown. If the die shows up an even number, the die is thrown again. What is the sample space for the experiment?
The numbers 1, 2, 3 and 4 are written separately on four slips of paper. The slips are put in a box and mixed thoroughly. A person draws two slips from the box, one after the other, without replacement. Describe the sample space for the experiment.
What is the total number of elementary events associated to the random experiment of throwing three dice together?
A box contains 1 red and 3 black balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
A pair of dice is rolled. If the outcome is a doublet, a coin is tossed. Determine the total number of elementary events associated to this experiment.
In a random sampling three items are selected from a lot. Each item is tested and classified as defective (D) or non-defective (N). Write the sample space of this experiment.
A box contains 1 white and 3 identical black balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
An experiment consists of rolling a die and then tossing a coin once if the number on the die is even. If the number on the die is odd, the coin is tossed twice. Write the sample space for this experiment.
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(i) Which pairs of events are mutually exclusive?
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(iii) Which events are compound events?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a jack, queen or a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is neither an ace nor a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a black card
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not an ace
From a deck of 52 cards, four cards are drawn simultaneously, find the chance that they will be the four honours of the same suit.
Tickets numbered from 1 to 20 are mixed up together and then a ticket is drawn at random. What is the probability that the ticket has a number which is a multiple of 3 or 7?
A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that one ball is black and the other red
A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that one is red and two are white
The face cards are removed from a full pack. Out of the remaining 40 cards, 4 are drawn at random. what is the probability that they belong to different suits?
There are four men and six women on the city councils. If one council member is selected for a committee at random, how likely is that it is a women?
Find the probability that in a random arrangement of the letters of the word 'UNIVERSITY', the two I's do not come together.
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is a multiple of 4?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is greater than 12?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is divisible by 5?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is not a multiple of 6?
An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that one ball is white.
Two cards are drawn from a well shuffled pack of 52 cards. Find the probability that either both are black or both are kings.
An integer is chosen at random from first 200 positive integers. Find the probability that the integer is divisible by 6 or 8.
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Compute P(A), P(B) and P(A ∩ B).
Two dice are thrown simultaneously. The probability of obtaining total score of seven is
The probability of getting a total of 10 in a single throw of two dices is
A bag contains 3 red, 4 white and 5 blue balls. All balls are different. Two balls are drawn at random. The probability that they are of different colour is
A single letter is selected at random from the word 'PROBABILITY'. The probability that it is a vowel is ______.
A bag contains 20 tickets numbered 1 to 20. Two tickets are drawn at random. The probability that both the numbers on the ticket are prime is ______.