Advertisements
Advertisements
Question
A cricket ball thrown across a field is at heights h1 and h2 from the point of projection at times t1 and t2 respectively after the throw. The ball is caught by a fielder at the same height as that of projection. The time of flight of the ball in this journey is
Options
`(h_1t_1^2 - h_2t_1^2)/(h_1t_2 - h_2t_1)`
`(h_1t_1^2 + h_2t_2^2)/(h_2t_1 - h_1t_2)`
`(h_1t_2^2 + h_2t_1^2)/(h_1t_2 + h_2t_1)`
`(h_1t_1^2 + h_2t_2^2)/(h_1t_1 + h_2t_2)`
Solution
`(h_1t_1^2 - h_2t_1^2)/(h_1t_2 - h_2t_1)`
Explanation:
`h_1 = (u sin theta)t_1 - 1/2 "gt"_1^2` ......(i)
`h_2 = (u sin theta)t_2 - 1/2 "gt"_2^2` ......(ii)
∴ `((h_1 + 1/2 "gt"_1^2))/((h_2 + 1/2 "gt"_2^2)) = t_1/t_2`
∴ `h_1t_2 - h_2t_1 = g/2(t_1t_2^2 - t_1^2t_2)` ......(iii)
∴ T = `(2 u sin theta)/g`
= `2/g[(h_1 + 1/2 "gt"_1^2)/t_1]` ......[From (i)]
= `2/t_1 [h_1/g + t_1^2/2]`
= `h_1/t_1 xx ((t_1t_2^2 - t_1^2 t_2)/(h_1t_2 - h_2t_1)) + t_1` ......[From (iii)]
= `(h_1t_1^2 - h_2t_1^2)/(h_1t_2 - h_2t_1)`