Advertisements
Advertisements
Question
A glass cylinder of length 12 x 10-2 m and area of crosssection 5 x 10-4 m2 has a density of 2500 kgm-3. It is immersed in a liquid of density 1500 kgm-3, such that 3/8. of its length is above the liquid. Find the apparent weight of glass cylinder in newtons.
Solution
Length of glass cylinder = l = 12 x 10-2 m
Area of cross-section = A = 5 x 10-4 m2
Volume of glass cylinder = V = A x l
V= 5 x 10-4 x 12 x 10-2
V= 0.00006 m3
Acceleration due to gravity = g = 9.8 m/s2
Density of glass cylinder = ρ = 2500 kgm3
Density of liquid = ρ' = 1500 kgm-3
∵ `3/8` length of glass cylinder is above the liquid
∴ Length of glass cylinder inside the liquid = `1-3/8 = (8-3)/8 = 5/8`
∴ Volume of liquid displaced by glass cylinder
`= 5/8 xx "Volume of glass cylinder"`
V' = `5/8 = 0.00006`
V' = `0.0003/8` = 0.0000375 m3
Mass of glass cylinder = m = V x ρ
m = 0.00006 x 2500 m
= 0.15 kg
Weight of glass cylinder = mg = 0.15 x 10=1.5 N
Mass of liquid displaced by glass cylinder = V’ x ρ’
m’= 0.0000375 x 1500
m’ = 0.05625 kg
Upthrust = Weight of liquid displaced by the glass cylinder
= m’g = 0.05625 x 10 = 0.5625 N
Apparent weight of glass cylinder in liquid = Actual weight of glass cylinder – Upthrust
= 1.5 – 0.5625 = 0.9375 N
APPEARS IN
RELATED QUESTIONS
Relative density of a substance is expressed by comparing the density of that substance with the density of :
The relative density of silver is 10.8. Find its density.
Calculate the mass of a body whose volume is 2 m3 and relative density is 0.52.
A piece of stone of mass 15.1 g is first immersed in a liquid and it weighs 10.9 gf. Then on immersing the piece of stone in water, it weighs 9.7 gf. Calculate:
- The weight of the piece of stone in air,
- The volume of the piece of stone,
- The relative density of stone,
- The relative density of the liquid.
A piece of stone of mass 113 g sinks to the bottom in water contained in a measuring cylinder and water level in cylinder rises from 30 ml to 40 ml. Calculate R.D. of stone.
A solid weighs 0.08 kgf in air and 0.065 kgf in water. Find
(1) R.D. of solid
(2) Density of solid in SI system. [Density of water = 1000 kgm3]
A piece of metal weighs 44.5 gf in air, 39.5 gf in water. What is the R.D. of the metal?